NOTES ON THE INTEGRABILITY OF F-STRUCTURES OF DEGREE K SATISFYING $F^K + (-1)^K F = 0$

ABDERRAHIM ZAGANE¹, AYDIN GEZER² AND NOUR ELHOUDA DJAA³

ABSTRACT. In this paper, we present a novel category of F-structures that adhere to the equation $F^K + (-1)^K F = 0$, where K is a positive integer. Our focus is on investigating the integrability aspects associated with these structures. Additionally, we provide illustrative examples of such F-structures.

References

- AI-Aqeel, A., Integrability conditions of a structure satisfying f⁵ − f = 0, Arab Gulf J. Scient. Res., Mach. Phys. Sci., 6 (2) (1988), 163-171.
- [2] Bejancu, A. CR-submanifolds of a Kaehler manifold I, Proc. Amer. Math. Soc. 69 (1) (1978), 135-142.
- [3] Brickell, F., Clark, R.S., Differentiable manifolds, Van Nostrand Reinhold Co, 1970.
- [4] Djaa, M., *F*-structure $F^3 \pm F = 0$, Ecole Symposium Equations Differentielles et Geometrie Differentielle EDGD07, Saïda 11-14 novembre 2007.
- [5] Das, L., Submanifolds of F-structure satisfying $F^{K} + (-1)^{K+1}F = 0$, Internat. J. Math. Math. Sci. **26** (2001), 167-172.
- [6] Das, L., On CR-structures and F-structure satisfying $F^{K} + (-1)^{K+1}F = 0$, Rocky Mountain J. Math. **36**(3) (2006), 885-892.
- [7] De León, M., Rodrigues, P.R., Methods of differential geometry in analytical mechanics, North-Holland Mathematics Studies, 1989.
- [8] Kobayashi, S. and Nomizu, K., Fundations of differential geometry, vol. II. Intersciense, New York-London 1963.
- [9] Matsumoto, K., On a structure defined by a tensor field f of type (1,1) satisfying $f^3 f = 0$, Bull. Yamagata Univ., $\mathbf{1}(1976)$, 33–47.
- [10] Pokhariyal, G.P., Structures defined by a tensor field of type (1, 1) satisfying $f^5 f = 0$, Tensor N.S., **42** (2) (1985) 97-100.
- [11] Singh, L., On Integrability Of F-structure satisfying $F^{2K+1} + F = 0$, The International Journal Of Engineering And Science (IJES), **5** (9) (2016), 64-66.
- [12] Yano, K., On a structure f satisfying $f^3 + f = 0$, Technical Report No. 12, University of Washington, Washington-USA, 1961.

Received 28 December 2023

²⁰²⁰ Mathematics Subject Classification. Primary 53C15, 58A30; Secondary 53A45.

¹ Relizane University, Faculty of Science and Technology, Department of Mathe-MATICS, 48000, RELIZANE-ALGERIA.

² Ataturk University, Faculty of Science, Department of Mathematics, 25240, Erzurum-TURKIYE.

 3 Relizane University, Faculty of Science and Technology, Department of Mathemat-ICS, 48000, RELIZANE-ALGERIA. Email address: ¹ Zaganeabr2018@gmail.com, ² aydingzr@gmail.com, ³ Djaanor@hotmail.fr